Problem: active(nats()) -> mark(cons(0(),incr(nats()))) active(pairs()) -> mark(cons(0(),incr(odds()))) active(odds()) -> mark(incr(pairs())) active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) active(head(cons(X,XS))) -> mark(X) active(tail(cons(X,XS))) -> mark(XS) active(cons(X1,X2)) -> cons(active(X1),X2) active(incr(X)) -> incr(active(X)) active(s(X)) -> s(active(X)) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) incr(mark(X)) -> mark(incr(X)) s(mark(X)) -> mark(s(X)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) proper(nats()) -> ok(nats()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(0()) -> ok(0()) proper(incr(X)) -> incr(proper(X)) proper(pairs()) -> ok(pairs()) proper(odds()) -> ok(odds()) proper(s(X)) -> s(proper(X)) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Bounds Processor: bound: 9 enrichment: match automaton: final states: {14,13,12,11,10,9,8,7} transitions: cons3(45,74) -> 66* cons3(62,61) -> 58* cons3(67,81) -> 82* active3(66) -> 58* pairs3() -> 71* 03() -> 67* ok4(80) -> 58* ok4(87) -> 61* ok4(99) -> 114* ok4(101) -> 108* ok4(118) -> 114* incr4(82) -> 94* incr4(77) -> 87* incr4(114) -> 107* incr4(99) -> 100* incr4(76) -> 58* incr4(71) -> 80* odds3() -> 77* nats3() -> 77* active4(80) -> 90* active4(45) -> 86* active4(48) -> 76* top4(90) -> 14* cons4(108,107) -> 91* cons4(86,74) -> 58* cons4(101,100) -> 102* cons4(67,87) -> 80* mark3(82) -> 76* mark4(102) -> 91* mark4(94) -> 58* incr5(102) -> 105* incr5(99) -> 127* incr5(126) -> 119* incr5(91) -> 90* incr5(118) -> 127* active5(67) -> 103* active5(71) -> 91* active5(133) -> 112* active0(5) -> 7* active0(2) -> 7* active0(4) -> 7* active0(6) -> 7* active0(1) -> 7* active0(3) -> 7* proper4(77) -> 114* proper4(67) -> 108* proper4(94) -> 90* proper4(81) -> 107* nats0() -> 1* cons5(103,87) -> 90* cons5(101,127) -> 132* cons5(120,119) -> 115* mark0(5) -> 2* mark0(2) -> 2* mark0(4) -> 2* mark0(6) -> 2* mark0(1) -> 2* mark0(3) -> 2* 04() -> 101* cons0(3,1) -> 8* cons0(3,3) -> 8* cons0(3,5) -> 8* cons0(4,2) -> 8* cons0(4,4) -> 8* cons0(4,6) -> 8* cons0(5,1) -> 8* cons0(5,3) -> 8* cons0(5,5) -> 8* cons0(6,2) -> 8* cons0(1,2) -> 8* cons0(6,4) -> 8* cons0(1,4) -> 8* cons0(6,6) -> 8* cons0(1,6) -> 8* cons0(2,1) -> 8* cons0(2,3) -> 8* cons0(2,5) -> 8* cons0(3,2) -> 8* cons0(3,4) -> 8* cons0(3,6) -> 8* cons0(4,1) -> 8* cons0(4,3) -> 8* cons0(4,5) -> 8* cons0(5,2) -> 8* cons0(5,4) -> 8* cons0(5,6) -> 8* cons0(6,1) -> 8* cons0(1,1) -> 8* cons0(6,3) -> 8* cons0(1,3) -> 8* cons0(6,5) -> 8* cons0(1,5) -> 8* cons0(2,2) -> 8* cons0(2,4) -> 8* cons0(2,6) -> 8* odds4() -> 99* 00() -> 3* proper5(105) -> 112* proper5(100) -> 119* proper5(82) -> 91* proper5(99) -> 126* proper5(101) -> 120* incr0(5) -> 9* incr0(2) -> 9* incr0(4) -> 9* incr0(6) -> 9* incr0(1) -> 9* incr0(3) -> 9* mark5(105) -> 90* pairs0() -> 4* top5(112) -> 14* odds0() -> 5* incr6(115) -> 112* incr6(132) -> 133* incr6(127) -> 139* incr6(129) -> 136* incr6(176) -> 165* incr6(178) -> 136* s0(5) -> 10* s0(2) -> 10* s0(4) -> 10* s0(6) -> 10* s0(1) -> 10* s0(3) -> 10* proper6(102) -> 115* proper6(99) -> 176* proper6(141) -> 149* proper6(118) -> 176* head0(5) -> 11* head0(2) -> 11* head0(4) -> 11* head0(6) -> 11* head0(1) -> 11* head0(3) -> 11* nats4() -> 118* tail0(5) -> 12* tail0(2) -> 12* tail0(4) -> 12* tail0(6) -> 12* tail0(1) -> 12* tail0(3) -> 12* ok5(132) -> 91* ok5(127) -> 107* ok5(129) -> 176,126 ok5(178) -> 176* ok5(123) -> 168,120 proper0(5) -> 13* proper0(2) -> 13* proper0(4) -> 13* proper0(6) -> 13* proper0(1) -> 13* proper0(3) -> 13* 05() -> 123* ok0(5) -> 6* ok0(2) -> 6* ok0(4) -> 6* ok0(6) -> 6* ok0(1) -> 6* ok0(3) -> 6* odds5() -> 129* top0(5) -> 14* top0(2) -> 14* top0(4) -> 14* top0(6) -> 14* top0(1) -> 14* top0(3) -> 14* ok6(137) -> 115* ok6(184) -> 160* ok6(136) -> 165,119 ok6(133) -> 90* ok6(190) -> 188* ok6(185) -> 181* top1(36) -> 14* cons6(140,139) -> 141* cons6(123,136) -> 137* cons6(148,127) -> 115* active1(5) -> 36* active1(2) -> 36* active1(4) -> 36* active1(6) -> 36* active1(1) -> 36* active1(3) -> 36* ok7(145) -> 112* ok7(192) -> 174* ok7(194) -> 149* ok7(151) -> 159* ok7(195) -> 179* proper1(5) -> 36* proper1(2) -> 36* proper1(4) -> 36* proper1(6) -> 36* proper1(1) -> 36* proper1(3) -> 36* incr7(137) -> 145* incr7(136) -> 151* incr7(188) -> 179* incr7(158) -> 149* incr7(190) -> 195* incr7(165) -> 159* ok1(30) -> 30,10 ok1(15) -> 36,13 ok1(32) -> 32,11 ok1(17) -> 36,13 ok1(34) -> 34,12 ok1(26) -> 26,8 ok1(28) -> 28,9 ok1(23) -> 36,13 active6(145) -> 149* active6(132) -> 115* active6(101) -> 148* tail1(5) -> 34* tail1(2) -> 34* tail1(4) -> 34* tail1(6) -> 34* tail1(1) -> 34* tail1(3) -> 34* mark6(141) -> 112* head1(5) -> 32* head1(2) -> 32* head1(4) -> 32* head1(6) -> 32* head1(1) -> 32* head1(3) -> 32* s6(101) -> 140* s6(123) -> 184* s1(5) -> 30* s1(2) -> 30* s1(4) -> 30* s1(6) -> 30* s1(1) -> 30* s1(3) -> 30* top6(149) -> 14* incr1(15) -> 16* incr1(5) -> 28* incr1(2) -> 28* incr1(4) -> 28* incr1(6) -> 28* incr1(1) -> 28* incr1(23) -> 18* incr1(3) -> 28* cons7(160,159) -> 149* cons7(152,151) -> 153* cons7(184,151) -> 194* cons7(164,136) -> 158* cons1(2,6) -> 26* cons1(17,16) -> 18* cons1(3,1) -> 26* cons1(3,3) -> 26* cons1(3,5) -> 26* cons1(4,2) -> 26* cons1(4,4) -> 26* cons1(4,6) -> 26* cons1(5,1) -> 26* cons1(5,3) -> 26* cons1(5,5) -> 26* cons1(6,2) -> 26* cons1(1,2) -> 26* cons1(6,4) -> 26* cons1(1,4) -> 26* cons1(6,6) -> 26* cons1(1,6) -> 26* cons1(2,1) -> 26* cons1(2,3) -> 26* cons1(2,5) -> 26* cons1(3,2) -> 26* cons1(3,4) -> 26* cons1(3,6) -> 26* cons1(4,1) -> 26* cons1(4,3) -> 26* cons1(4,5) -> 26* cons1(5,2) -> 26* cons1(5,4) -> 26* cons1(5,6) -> 26* cons1(6,1) -> 26* cons1(1,1) -> 26* cons1(6,3) -> 26* cons1(1,3) -> 26* cons1(6,5) -> 26* cons1(1,5) -> 26* cons1(2,2) -> 26* cons1(2,4) -> 26* proper7(140) -> 160* proper7(127) -> 165* proper7(139) -> 159* proper7(129) -> 188* proper7(101) -> 168* proper7(178) -> 188* proper7(153) -> 169* odds1() -> 15* active7(137) -> 158* active7(194) -> 169* active7(123) -> 164* pairs1() -> 23* mark7(153) -> 149* 01() -> 17* s7(164) -> 200* s7(168) -> 160* s7(123) -> 152* s7(185) -> 192* nats1() -> 15* top7(169) -> 14* mark1(30) -> 30,10 mark1(32) -> 32,11 mark1(34) -> 34,12 mark1(26) -> 26,8 mark1(28) -> 28,9 mark1(18) -> 36,7 cons8(192,198) -> 201* cons8(200,151) -> 169* cons8(174,173) -> 169* top2(38) -> 14* proper8(152) -> 174* proper8(151) -> 173* proper8(136) -> 179* proper8(123) -> 181* active2(15) -> 38* active2(17) -> 38* active2(23) -> 38* s8(207) -> 206* s8(181) -> 174* proper2(15) -> 56* proper2(17) -> 50* proper2(16) -> 49* proper2(23) -> 54* proper2(18) -> 38* incr8(179) -> 173* incr8(195) -> 198* incr2(54) -> 38* incr2(56) -> 49* incr2(48) -> 46* incr2(43) -> 44* nats5() -> 178* cons2(50,49) -> 38* cons2(45,44) -> 46* 06() -> 185* mark2(46) -> 38* odds6() -> 190* pairs2() -> 48* nats6() -> 190* 02() -> 45* ok8(201) -> 169* ok8(198) -> 173* odds2() -> 43* active8(184) -> 200* active8(201) -> 203* active8(185) -> 207* nats2() -> 43* top8(203) -> 14* top3(58) -> 14* cons9(206,198) -> 203* proper3(45) -> 62* proper3(44) -> 61* proper3(46) -> 58* proper3(48) -> 63* proper3(43) -> 70* active9(192) -> 206* ok2(45) -> 50* ok2(48) -> 54* ok2(43) -> 56* ok3(77) -> 70* ok3(67) -> 62* ok3(74) -> 49* ok3(71) -> 63* ok3(66) -> 38* incr3(70) -> 61* incr3(77) -> 81* incr3(63) -> 58* incr3(48) -> 66* incr3(43) -> 74* problem: Qed